مکانیک کوانتومی

  • شروع کننده موضوع F@EZEH
  • بازدیدها 224
  • پاسخ ها 0
  • تاریخ شروع

F@EZEH

کاربر نگاه دانلود
کاربر نگاه دانلود
عضویت
2016/08/18
ارسالی ها
2,743
امتیاز واکنش
70,134
امتیاز
1,115
محل سکونت
ραяƨıαп
مکانیک کوانتومی شاخه‌ای بنیادی از فیزیک نظری است که با پدیده‌های فیزیکی در مقیاس میکروسکوپی سر و کار دارد. در این مقیاس، کُنِش‌های فیزیکی در حد و اندازه‌های ثابت پلانک هستند. مقدار عددی ثابت پلانک نیز بسیار کوچک و برابر است با ۶٫۶۲۶x۱۰-۳۴
بنیادی‌ترین تفاوت مکانیک کوانتومی با مکانیک کلاسیک در قلمرو کوانتومی است که به ذرات در اندازه‌های اتمی و زیراتمی می‌پردازد. مکانیک کوانتومی بنیادی‌تر از مکانیک نیوتنی و الکترومغناطیس کلاسیک است، زیرا در مقیاس‌های اتمی و زیراتمی که این نظریه‌ها با شکست مواجه می‌شوند، می‌تواند با دقت زیادی بسیاری از پدیده‌ها را توصیف کند. مکانیک کوانتومی به همراه نسبیت پایه‌های فیزیک جدید را تشکیل می‌دهند.
مکانیک کوانتومی که به عنوان نظریه کوانتومی نیز شناخته شده است، شامل نظریه‌ای دربارهٔ ماده، تابش الکترومغناطیسی و برهمکنش میان ماده و تابش است.[۱]

آشنایی

واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی یک اتم در حال سکون) تحت شرایط خاص، مقدارهای گسسته‌ای نسبت می‌دهد. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به وسیلهٔ ورنر هایزنبرگ، ماکس پلانک، آلبرت اینشتین، لویی دوبروی، نیلز بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.
در ابتدای قرن بیستم، کشفیات و تجربه‌های زیادی نشان می‌دادند که در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف کاملی از پدیده‌ها ارائه دهند. وجود همین نارسایی‌ها موجب نخستین ایده‌ها و ابداع‌ها در مسیر ایجاد نظریه کوانتومی شدند. بعنوان یکی از مثال‌های بسیار مشهور اگر قرار بود مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار یک اتم حاکم باشند، الکترون‌ها بایستی به سرعت به سمت هسته اتم حرکت کرده و بر روی آن سقوط می‌کردند و در نتیجه اتم‌ها ناپایدار می‌شدند؛ ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند و چنین سقوطی مشاهده نمی‌شود. تلاش اولیه برای حل این تناقض توسط نیلز بور با پیشنهاد فرضیه اش دایر بر وجود مدارهای مانا رخ داد، که موفقیت‌هایی هم در توصیف طیف اتم هیدروژن داشت.
پدیدهٔ دیگری که در این مسیر جلب توجه می‌کرد، مطالعه رفتار امواج الکترومغناطیسی مانند نور در برهمکنش با ماده بودند. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعه بر روی تابش جسم سیاه پیشنهاد کرد که برای توصیف صحیح مسئله تابش جسم سیاه، می‌توان انرژی این امواج را به شکل بسته‌های کوچکی (کوانتا یا کوانتوم) در نظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامد موج بستگی دارد توصیف کرد.
24767663bb931daecf1eb628be4fea46f32e3622

در ادامه، با نظریه دوبروی دایر بر امکان توصیف حرکت ذرات به‌وسیله امواج، این نظریه‌ها به دیدگاهی به نام دوگانگی موج-ذره برای ذرات و امواج الکترومغناطیسی منجر شدند که برطبق آن، ذرات دو نوع رفتار (موجی و ذره‌ای) را از خود نشان می‌دهند. نظریه کوانتوم در ابتدا با کشف نظری فوتون توسط «ماکس پلانک» در ۱۹۰۰. م آغاز شد و با کارهای «نیلز بور» به پیشرفت چشمگیری رسید. گرچه هنوز نظریه منسجمی نبود بلکه مجموعه‌ای بود از فرضیات، اصول و قضایا و دستورالعمل‌های محاسبه‌ای. در واقع هر مسئله کوانتومی را ابتدا به روش مکانیک کلاسیک حل می‌کردند و سپس جواب را یا با شرایط کوانتومی وفق می‌داند یا با اصل تطابق به زبان کوانتومی درمی‌آورند. به عبارت دیگر تلاش‌ها بیشتر بر اساس حدس‌های زیرکانه بود تا استدلالهای منطقی
تلاش‌ها برای تبیین تناقضات و ایجاد رهیافت‌های جدید، منجر به تکوین ساختار جدیدی موسوم به مکانیک کوانتومی شد که توسط دو فرمولبندی جداگانه (که بعداً معلوم شد هم ارزند) موسوم به مکانیک ماتریسی (عمدتا توسط هایزنبرگ) و مکانیک موجی (بیشتر توسط شرودینگر) توصیف می‌شد. به عنوان مثال، ایدهٔ توصیف ذرات با امواج، مولّد ابداع مفهوم بسته‌های موجِ همبسته ذرات شد. به نوبهٔ خود، تلاش برای یافتن معادلات حاکم بر تحول زمانی این بسته‌های موج به معادله موج یا معادله شرودینگر منتهی شد.
در تعبیری که توصیف شرودینگر از مکانیک کوانتومی بدست می‌دهد، حالت هر سیستم فیزیکی در هر لحظه به وسیلهٔ یک تابع موج مختلط توصیف می‌شود. چون تابع موج یک کمیت مختلط است، خود مستقیماً مُبیّن یک کمیت فیزیکی نیست، اما با استفاده از این تابع می‌توان احتمال بدست آمدن مقادیر مختلف حاصل از اندازه‌گیری یک کمیت فیزیکی را پیش‌بینی کرد. در حقیقت این احتمال با ضریبی از مربع قدرمطلق تابع موج (که کمیت اخیر حقیقی است) برابر است. به‌عنوان مثال از کاربرد این تابع احتمال، با آن می‌توان احتمال یافتن الکترون در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص؛ یا احتمال بدست آمدن مقدار خاصی برای کمیت تکانه زاویه‌ای سیستم را محاسبه کرد. یا مثلاً به کمک تابع موج و توزیع احتمال بدست آمده از آن، می‌توان محتمل‌ترین مکان (یا مکان‌های) حضور یک ذره در فضا را یافت (که در مورد الکترون‌های یک اتم گاهی به آن اُربیتال می‌گویند). البته معنی این حرف این نیست که الکترون در تمام ناحیه پخش شده‌است، و الکترون در یک ناحیه از فضا یا هست و یا نیست.
در مکانیک کلاسیک پیش بینی تحول زمانی مقادیر کمیت‌ها و اندازه‌گیری مقادیر کمیت‌ها در نظریه با هر دقت دلخواه ممکن است و تنها محدودیت موجود، خطای متعارف آزمایش و آزمایشگر، یا فقدان داده‌های اولیه کافی است. اما در مکانیک کوانتومی فرایند اندازه‌گیری یک محدودیت ذاتی به همراه خود دارد. در واقع نمی‌توان برخی کمیت‌ها (کمیت‌های مزدوج) را هم‌زمان و با هر دقت دلخواه اندازه‌گیری کرد؛ مانند مکان و تکانه. اندازه‌گیری دقیق‌تر هریک از این کمیت‌ها، منجر به از دست رفتن هرچه بیشتر داده‌های مربوط به کمیت دیگر می‌شود. این مفهوم که به اصل عدم قطعیت هایزنبرگ مشهور است، از مفاهیم بسیار مهم در مکانیک کوانتومی بوده و با مفهوم بنیادین «تأثیر فرایند اندازه‌گیری بر حالت سیستم» که از ابداعات اختصاصی مکانیک کوانتومی (در برابر مکانیک کلاسیک است) همبسته است.
توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، و بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی به عنوان چهارچوب خود استفاده می‌کنند؛ مانند فیزیک ماده چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی، شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، و فیزیک هسته‌ای. مکانیک کوانتومی علاوه بر این که دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) هم کاربرد دارد، مانند ابررسانایی و ابرشاره. همچین کاربردهای وسیعی در حوزه فناوری‌های کاربردی، بر مفاهیم و دستاوردهای مکانیک کوانتومی استوار هستند.
 

برخی موضوعات مشابه

تاپیک قبلی
تاپیک بعدی
بالا