VIP ►◄ مقالات شیمی ►◄

☾♔TALAYEH_A♔☽

کاربر نگاه دانلود
کاربر نگاه دانلود
عضویت
2017/05/18
ارسالی ها
35,488
امتیاز واکنش
104,218
امتیاز
1,376
فاضلاب صنعتی

مقدمه
فاضلاب و پس آبهای مراکز صنعتی ، کشاورزی و همینطور محلهای مسکونی از آلوده کننده‌های عمده آبهای زیرزمینی و آبهای سطحی بویژه آبهای رودخانه‌ها ، دریاها و دریاچه‌ها هستند. با این فاضلابها و همینطور عوامل مؤثر در آلودگی فاضلاب و پس آبها آشنا می‌شویم.

bin.jpg

پتانسیل و ظرفیت اکسیداسیون ، معیاری برای تعیین آلودگی فاضلابها
پتانسیل و اکسیژن محلول در آب ، عامل اساسی زندگی و رشد حیوانات و گیاهان است. زندگی این موجودات بستگی به حداقل اکسیژن محلول در آب دارد. ماهی بیش از سایر جانداران و بی مهره‌گان در درجه دوم و باکتریها کمتر از تمام موجودات آبزی به اکسیژن محلول در آب نیاز دارند. در یک آب معمولی که ماهی در آن پرورش می‌یابد، غلظت اکسیژن محلول نباید کمتر از 5 میلیگرم در لیتر باشد و این مقدار در آبهای سرد به 6 میلیگرم در لیتر افزایش می‌یابد.

در صورتی که مقدار اکسیژن محلول در آب کمتر از حداقل مجاز برای زندگی جانداران آبزی باشد، آن آب ، آلوده تلقی می‌گردد. وجود کربن هستند و فعل و انفعال مهمی که در محیط آبی به کمک باکتریهای خاصی انجام می‌پذیرد به ترتیب زیر است:


f55ccba0a0d2914a35b3a73ad3d9c2b2.png


در این واکنش به ازاء 12 گرم کربن ، 32 گرم اکسیژن مصرف می‌شود. اگر فرض کنیم که مقداری روغن که حاوی 12 گرم کربن بوده ، در آب ریخته شود، با در نظر گرفتن حداکثر مقدار اکسیژن محلول در آب در شرایط معمولی (میلیگرم در لیتر) این مقدار روغن آبی در حدود 3555 لیتر را فاقد اکسیژن نموده و به معنی دیگر کاملا آلوده می‌نماید.

gg.jpg

میزان مواد آلی در فاضلابها
بطوری که قابل پیش بینی است فاضلابها و پس آبها حاوی مقدار بسیار زیادی مواد آلی است. تقریبا آثار کلیه مواد مصرف در زندگی اجتماعی و همینطور صنایع ، در فاضلابها وجود دارد. تخلیه فاضلابها و پس آبها در آبهای معمولی آنها را به سرعت آلوده می‌کند و این در واقع زاییده وجود مقادیر بسیار زیاد مواد آلی در فاضلابها و پس آبها.
اکسیژن مورد نیاز جهت اکسیداسیون یک فاضلاب
اکسیژن مورد نیاز جهت اکسیداسیون یک فاضلاب ، پس آب و یا آب آلوده معیار مناسبی برای آگاهی از حدود مقدار مواد آلوده کننده موجود در آنهاست. دو روش تعیین میزان آلودگی که بر اساس یاده شده در بالا متکی هستند، تحت عناوین COD و BOD شناخته شده‌اند.


  • (BOD (Biochemical Oxygen Demand:
BOD یک فاضلاب ، پس آب و یا آب عبارت است از میزان اکسیژن مور نیاز میکرو ارگانیسمها در اکسیداسیون بیوشیمیایی مواد آلی موجود در آن. در حقیقت BOD تعیین کننده مقدار اکسیژن مورد لزوم برای ثبوت بیولوژیکی مواد آلی نمونه مورد نظر خواهد بود. اگر BOD آبی در حدود 1 میلیگرم در لیتر باشد، آب خوب و اگر به حدود 3 برسد مشکوک و بیشتر از 5 ، آلوده است.


  • (COD (Chemical Oxygen Demand:
COD یک فاضلاب ، پس آب و یا آب آلوده ، عبارت است از میزان اکسیژن مورد نیاز برای اکسیداسیون مواد قابل اکسیداسیون موجود در آن. مقدار COD معمولا با استفاده از یک عامل اکسید کننده قوی در محیط اسیدی قابل اندازه گیر است. تعیین BOD با وجود ارزش فراوان به همراه دو نکته ضعف اساسی است. اولی طولانی بودن مدت آزمایش و دومی امکان مسموم شدن میکرو ارگانیسمهای مورد نظر در تماس با مواد آلوده در این مدت طولانی ، از اینرو COD ارزش فراوانی پیدا می‌کند.
درجه بندی فاضلابها
فاضلاب آبها بر حسب مقدار BOD درجه بندی می‌شود. فاضلابهایی که BOD آنها به ترتیب در حدود 210 ، 350 و 600 میلیگرم در لیتر هستند، فاضلابهای ضعیف ، متوسط و قوی هستند. برای جلوگیری از آلودگی آبها در بیشتر نقاط جهان ، هیچ فاضلابی حتی بعد از تصفیه در صورتیکه BOD آن بیش از 20 میلیگرم در لیتر باشد، مجاز به ورود به جریانهای سطحی و یا زیر زمینی نیست.

fazelab.gif

فاضلابهای غیر انسانی
باید دانست که در طبیعت تنها انسان نیست که با تولید فاضلاب یا پس آب باعث آلودگی آبها می‌شود. بلکه فعالیت حیوانات نیز در این آلوده سازی بسیار مؤثر است. در صورتیکه به عنوان مبنای مقایسه ، میزان آلودگی انسان را معادل یک BOD فرض کنیم، حیوانات دیگر نظیر اسب ، گاو ، گوسفند ، خوک و مرغ خانگی به ترتیب 11.3 ، 16.4 ، 2.5 ، 1.9 و 0.91 خواهند بود.
تخلیه بی رویه فاضلابهای صنعتی در آبهای سطحی
تخلیه بی رویه و پس آبهای صنعتی (و همینطور غیر صنعتی و کشاورزی) در آبهای سطحی ، موجب مرگ و میر حیوانات آبزی بخصوص ماهیها می‌گردد. جالب توجه است که تلاشی اجساد همین حیوانات خود مزید بر علت موجب آلودگی هر چه بیشتر می‌گردد. از دیگر اثرات مهم این فاجعه تبدیل فعالیت باکتریهای آب از حالت هوازی (Aerobic) یعنی توأم با مصرف اکسیژن به حالت بی هوازی (Anaerobic) و بدون نیاز به اکسیژن می‌باشد.

فعالیت باکتریهای بی هوازی ، توام با پیدایش نامطبوع و مواد قابل اعتراض است، بطوری که
f4126aa10bc9b923d045184eb61b042c.png
بوی زننده‌ای دارد و قابل اشتعال است.
239a3ddc284f8b46eafd5482b76d7f75.png
بدبو و بویی نظیر تخم مرغ گندیده دارد و
9dd434e34109d4f04866d3deb2347dff.png
، سمی خطرناک بوده و بوی تند سیر می‌دهد. بطور کلی غالب محصولات از فعالیت باکتریهای بی هوازی برای زندگی دیگر موجودات بخصوص موجودات آبزی ، مضر است.
مواد شیمیایی ، ایجاد کننده اصلی فاضلاب صنعتی
از مهمترین و شناخته شده ترین مواد شیمیایی که در ابعاد وسیعی مصرف عمومی دارد و به علل مختلف ایجاد آلودگی می‌کند، عبارت از شوینده‌ها (Detergents) است. از حدود سالهای 1940 ، شوینده‌های مصنوعی وارد بازار مصرف شدند که مهمترین آنها عبارت بود از الکیل بنزن سولفانات. این نوع شوینده‌ها دارا یک نکته ضعف مهمی هستند که عبارت از عدم تجزیه آنها توسط مکرو ارگانیسمها است. وجود این مواد در آب باعث ایجاد کف می‌گردد و این کف باعث مشکلات فراوانی برای عمل فتوسنتز می‌گردد.

استفاده از این شوینده‌ها بعدها در آمریکا و اروپا ممنوع شد تا سرانجام در سال 1965 شوینده جدیدی با نام LAS به بازار آمد که نکته ضعف مذکور را ندارد و توسط میکرو ارگانیسمها تجزیه می‌گردد. ترکیبات ازت دار نیز از طرق مختلف بویژه کودهای شیمیایی وارد فاضلابها می‌گردد. فسفر و ازت که از طریق فاضلاب وارد آب دریاچه‌ها می‌گردد و به علت تغذیه خوب گیاهان آبی پدیده‌ای به نام مسن شدن ایجاد می‌کند و ا ایجاد و ته نشین شدن لجن و گل و لای از عمق این دریاچه‌ها کاسته می‌شود و یکی از مهمترین اثرات نامطلوب این پدیده ، کاهش شدید اکسیژن آبهاست که منجر به تبدیل باکتریهای هوازی به بی هوازی می‌گردد.
مهمترین عوامل ضرورت عدم تخلیه فاضلابهای صنعتی به آبهای جاری و زیر زمینی
  • اسیدیته آزاد
  • مواد قلیایی قوی
  • غلظت زیاد مواد محلول
  • چربی و روغن
  • فلزات سنگن و مواد سمی
  • گازهای بدبو و سمی
  • مواد رادیو اکتیو
  • مواد معلق ، رنگ ، بو
  • ازدیاد دما
  • وجود میکرو ارگانیسمهای بیماری زا
 
  • پیشنهادات
  • ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    توموگرافی فعالسازی با نوترون

    دید کلی
    روشهای توموگرافی به آن روشهایی اتلاق می‌گردد که در آن ، تعداد زیادی از پرتابه های انفرادی از میان یک ساختمان نامعلوم بطریق ریاضی برای ارائه تصویری از آن ساختمان تنظیم شده باشند.

    توموگرافی فعالسازی با نوترون ، جزو روشهای جایگزینی در تجزیه بطریق فعالسازی است.

    hhhh.jpg

    روشهای جایگزینی در تجزیه بطریق فعالسازی
    تجزیه بطریق فعالسازی اصولا برای تعیین کل مقادیر عنصری ، بدون توجه به امکان عناصر در نمونه بکار رفته است. با وجود این، برای بسیاری از کاربردها ، مکان عنصر از اهمیت بالایی برخوردار است. بعضی از روشهای فعالسازی که برای پاسخ به این نیاز تجزیه‌ای توسعه یافته است، در زیر می‌آید.
    تغییرات در عمق نوترون ( NDP )
    مشکل تجزیه‌ای معروف تعیین B در مواد نیمه هادی انگیزه ای برای تلاش‌های اولیه در توسعه روش NDP بود. در NDP ، باریکه‌‌ای از نوترون‌های حرارتی ، موجب نشر ذرات باردار ، احتمالا پروتون‌ها و ذرات آلفا و یک هسته پس زدن می‌گردند. هر کدام از این ذرات ، دارای یک انرژی معینی خواهند بود که بوسیله مقدار Q برای واکنش هسته‌ای تعریف می‌شوند.

    ذرات پس از ترک نمونه ، آشکارسازی شده و اختلاف در انرژی اولیه و انرژی اندازه گیری شده می‌تواند به عمق هسته هدف اولیه در نمونه نسبت داده شود.

    notron.jpg

    توموگرافی فعالسازی با نوترون
    روشی که از بازساخت توموگرافی استفاده نموده و احتمالا برای اکثر مردم آشناست ، توموگرافی محوری کامپیوتری یا "اسکن CAT" است که در تشخیص پزشکی مورد استفاده قرار می‌گیرد. در توموگرافی فعالسازی نوترونی ، نمونه از نوترونها فعال می‌گردد و اشعه گاما نشر شده از نمونه برای بازساخت تصویر مورد استفاده قرار می‌گیرد. هر دو تصویر دوبعدی و سه‌بعدی با بکار بردن توموگرافی فعالسازی نوترونی شکل گرفته‌اند.

    چنانچه رادیونوکلیدها ، پوزیترون منتشر نمایند، همانند حالت توموگرافی نشر پوزیترون ( PET ) ، آرایه‌های فضایی بدلیل ارتباط زاویه‌ای فوتون‌های نابودی تولید شده ، براحتی استنتاج می‌شوند. تجزیه‌های مربوط به ارگانیزم‌های زنده در جدول زیر آمده است.



    اشعه گامای آشکار شده عنصر واکنش‌(ها)
    3-10 تاخیری Ca 48Ca(n,γ)49Ca
    0.511 تاخیری N 14N(n,2n)13N
    0.559 آنی Cd 113Cd(n,γ)114Cd
    6.1 تاخیری O 16O(n,p)16N
    2.223 آنی H 1H(n,γ)2H
    2.75 ، 1.369 تاخیری Na 23Na(n,γ)24Na
    2.168 تاخیری Cl 37Cl(n,γ)38Cl


    زیاد _ آنی
    1.78 تاخیری P 31P28Al(n,α)P
    0.08 آنی P 31P(n,α)32P
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    گریس

    mix.jpg

    گریس یا روغن (greese) ، برشی از نفت خام با نقطه جوش بالاتر از 400 درجه سانتی‌گراد می‌باشد.

    دید کلی
    وجه تمایز روغنهای نفتی یا گریس از سایر مواد نفتی در درجه اول ، نفت سفید است که به عنوان سوخت بکار می‌رود.
    روشهای تهیه گریس در پالایشگاه
    روغنهای نفتی (گریس) یکی به روش تقطیر در پالایشگاه تهیه می‌شوند، به این صورت که بعضی روغنها از چکیده‌های حاصل از تقطیر تحت خلاء یا تقطیر بوسیله بخار آب تهیه می‌شوند. گروهی از این مواد نیز از اختلاط چکیده‌ها و باقی مانده‌ها بدست می‌آیند. چکیده‌های مناسب برای تهیه گریس عبارتند از:

    هیدروکربنهایی که در مولکول آنها از 25 تا 35 و یا احتمالا 40 اتم کربن وجود دارد. در مولکول باقیمانده‌هایی که به عنوان روغن گریس بکار می‌رود، از 50 تا 60 و حتی گاهی تا 80 و بیشتر اتم کربن وجود دارد. ساختمان مولکولی روغنهای پالایش شده معمولا با روغنهای خام به مقدار قابل ملاحظه‌ای تفاوت دارد. زیرا در جریان پالایش ، پارافینهای نرمال تشکیل می‌دهد، حذف می‌شوند. ثانیا پالایش از راه استخراج بوسیله حلال و عمل جذب سطحی ، بیشترِ مواد غیر هیدروکربنی و معطره‌های چند حلقه‌ای (هیدروکربنهای آروماتیک) و احتمالا بعضی از سیکلو پارافینهای چند حلقه‌ای را حذف می‌نماید.

    oils.jpg

    تقسیم بندی گریس از نظر کاربرد
    1. گریس ویژه بخشهای اتصالی محور حرکت (در 5 نوع ساخته شده است)

    2. گریس ویژه محفظه میل لنگ (در 7 نوع ساخته شده است)

    3. گریسی که به عنوان سیال در تبدیل کننده‌های چند بهره‌ای یا جفتهای هیدرولیکی بکار می‌رود.
    تجزیه گریس
    نتایج حاصله از تجزیه گریس نشان می‌دهد که روغن یا گریس نسبت به اجزای سبکتر نفت ، حاوی مقدار بیشتری از سیکلو پارافینها و معطره‌ها و اجزای غیر هیدروکربنی بوده و شامل مقدار کمتری هیدروکربنهای پارافینی نرمال شاخه‌دار می‌باشد.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    الکترولیز آب




    2d3d_physics1.jpg

    تاریخچه
    برای اولین بار در سال 1800، آب بوسیله "کارلسیل" و نیکولسن ، الکترولیز شد که منجر به آزاد شدن هیدروژن در کاتد و اکسیژن در آند شد.
    الکترولیز آب خالص
    در الکترولیز آب خالص ، از آنجا که آب خالص رسانا نیست، می‌بایستی الکترولیتی به آن اضافه کرد که نه آنیون آن قادر به ترکیب شدن با الکترودها باشد و نه کاتیون آن. برای این منظور ، می‌توان خواه از یک اسید مثلا اسید سولفوریک (H2SO4) ، خواه یک باز ، مانند هیدروکسید سدیم (NaOH) ، و حتی یک نمک (Na2SO4) استفاده کرد. برعکس ، به‌علت آزاد شدن کلر آندی ، شایسته است که از مصرف کلریدها خودداری شود.
    اختلاف پتانسیل لازم برای الکترولیز آب
    اصولا ، اختلاف پتانسیل لازم برای تجزیه آب ، چیزی جز اختلاف پتانسیل الکتریکی یک الکترود اکسیژنی و یک الکترود هیدروژنی نیست که در PH برابر 1.23 ولت است. در عمل ، بایستی اضافه پتانسیل الکتریکی آندی و کاتدی را که موجب افزایش اختلاف پتانسیل تحمیلی و بنابراین مصرف انرژی می‌شود، به حساب آورد.
    الکترودهای لازم برای الکترولیز آب و اختلاف پتانسیل نتیجه شده
    این اضافه پتانسیلهای الکتریکی ، بستگی اندکی به نوع الکترولیت انتخاب شده دارند، اما به‌شدت به ماهیت الکترودها وابسته‌اند. بهترین نتایج را می‌توان با کاتد پلاتینی و آند نیکلی بدست آورد. اما بدلیل قیمت بسیار بالای چنین وسایلی و نظر به برتری اندکی که نتیجه می‌شود، در صنعت ترجیح داده می‌شود تا با الکترودهای آهنی در محلول سود یا پتاس سوزان کار کنند.

    بنابراین ، اختلاف پتانسیل حداقل الکترولیز در حدود 1.7 ولت است. بایستی افت اهمی پتانسیل الکتریکی در حمام را به آن اضافه کرد. با وجود دیافراگم ، مقدار افت بیشتر می‌شود. در مجموع ، اختلاف پتانسیل حقیقی ، اندکی بیشتر از 2 ولت است.

    3_15_05_amiad2.jpg

    چگونگی بدست آوردن گازهای خالص
    برای بدست آوردن گازهای خالص ، بایستی قسمتهای آندی و کاتدی را از یکدیگر جدا کرد. برای این منظور ، خواه از یک ظرف استوانه‌ای شیشه‌ای که کاتد را احاطه می‌کند و خواه از یک دیافراگم آزبستی استفاده می‌شود. لیکن ، گاز خالص بدست آمده نسبی است و هر یک از گازهای اکسیژن و هیدروژن می‌توانند تا 2 الی 3 درصد از دیگری را در خود داشته باشند، ولی عمل پالایش شیمیایی بعدی آسان است.
    انرژی لازم برای الکترولیز آب
    مصرف انرژی در حدود 6 کیلووات ساعت (KWh) ، برای بدست آوردن یک متر مکعب هیدروژن و نیم متر مکعب اکسیژن ، مقدار زیادی است و علاوه بر آن ، اکسیژن غالبا محل فروش هم ندارد. بدین ترتیب ، این روش اغلب در مناطقی که دارای انرژی الکتریکی فراوان هستند (نروژ) و بویژه به‌منظور تهیه هیدروژن متراکم که در سیلندر به فروش می‌رسد، استفاده می‌شوند. اما این هیدروژن بخش اندکی از کل گاز هیدروژن تولید شده است. اما با این وجود ، دستگاههای الکترولیز در فرانسه یا به منظور ایجاد موازنه تولید یا برای استفاده از کارخانجات مخصوص که هیدروژن خالص را به‌عنوان کاهنده بکار می‌برند، بکار بـرده می‌شوند. در این قبیل موارد ، اغلب اکسیژن در فضا رها می‌شود.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    برج تقطیر

    دید کلی
    تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کوره‌های مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج می‌شود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده می‌شوند.

    eeee.jpg

    برجهای تقطیر با سینی کلاهکدار
    در برجهای تقطیر با سینی کلاهکدار ، تعداد سینیها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی‌ها به مقدار مایع و گاز که در واحد زمان از یک سینی می‌گذرد، وابسته است. هر یک از سینی‌های برج ، یک مرحله تفکیک است. زیرا روی این سینیها ، فاز گاز و مایع در کنار هم قرار می‌گیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینی‌ها انجام می‌شود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.
    بخشهای مختلف برج تقطیر با سینی کلاهکدار
    • بدنه و سینیها: جنس بدنه معمولا از فولاد ریخته است. جنس سینی‌ها معمولا از چدن است. فاصله سینی‌ها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر می‌گزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4ft فاصله میان 50 - 18 سانتیمتر قرار می‌دهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینی‌ها در نظر گرفته می‌شود.

    • سرپوشها یا کلاهکها: جنس کلاهکها از چدن می‌باشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب می‌شود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.

    • موانع یا سدها: برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام "وییر" (Wier) قرار می‌دهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینی‌ها بالا می‌رود.
    برجهای تقطیر با سینی‌های مشبک
    در برجهای با سینی مشبک ، اندازه مجراها یا شبکه‌ها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینیها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینیها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.

    خورندگی فلز سینیها هم در این نوع سینیها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد می‌شود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و می‌دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.
    برجهای تقطیر با سینی‌های دریچه‌ای
    این نوع سینیها مانند سینیهای مشبک هستند. با این اختلاف که دریچه‌ای متحرک روی هر مجرا قرار گرفته است. در صنعت نفت ، دو نوع از این سینیها بکار می‌روند:


    1. انعطاف پذیر: همانطور که از نام آن برمی‌آید، دریچه‌ها می‌توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.

    2. صفحات اضافی: در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار می‌گیرد و دیگری سنگین که بر روی سه پایه‌ای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در می‌آید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت می‌کنند.
    مقایسه انواع گوناگون سینی‌ها
    در صنعت نفت ، انواع گوناگون سینی‌ها در برجهای تقطیر ، تفکیک و جذب بکار بـرده می‌شوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار می‌گیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینی‌های کلاهکدار بکار بـرده می‌شوند، برای مقایسه مشخصات سینی‌های دیگر ، آنها را نسبت به سینی‌های کلاهکدار ارزیابی می‌کنند.
    برجهای انباشته
    در برجهای انباشته ، بجای سینی‌ها از تکه‌ها یا حلقه‌های انباشتی استفاده می‌شود. در برجهای انباشته حلقه‌ها یا تکه‌های انباشتی باید به گونه‌ای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد.


    1. ایجاد بیشترین سطح تماس میان مایع و بخار

    2. ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته
    جنس مواد انباشتی
    این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.
    استحکام مواد انباشتی
    جنس مواد انباشتی باید به اندازه کافی محکم باشد تا بر اثر استفاده شکسته نشده و تغییر شکل ندهد.
    شیوه قرار دادن مواد انباشتی
    مواد انباشتی به دو صورت منظم و نامنظم درون برج قرار می‌گیرند.


    1. پر کردن منظم: از مزایای این نوع پر کردن، کمتر بودن افت فشار است که در نتیجه می‌شود حجم بیشتر مایع را از آن گذراند.

    2. پر کردن نامنظم: از مزایای این نوع پر کردن ، می‌توان به کم هزینه بودن آن اشاره کرد. ولی افت فشار بخار در گذر از برج زیاد خواهد بود.

    rtyuopl.jpg

    مقایسه برجهای انباشته با برجهای سینی‌دار
    در برجهای انباشته ، معمولا افت فشار نسبت به برجهای سینی‌دار کمتر است. ولی اگر در مایع ورودی برج ، ذرات معلق باشد، برجهای سینی‌دار بهتر عمل می‌کنند. زیرا در برجهای انباشته ، مواد معلق ته‌نشین شده و سبب گرفتگی و برهم خوردن جریان مایع می‌گردد. اگر برج بیش از حد متوسط باشد، برج سینی‌دار بهتر است. زیرا اگر در برجهای انباشته قطر برج زیاد باشد، تقسیم مایع در هنگام حرکت از بستر انباشته شده یکنواخت نخواهد بود.

    در برجهای سینی‌دار می‌توان مقداری از محلول را به شکل فرایندهای کناری از برج بیرون کشید، ولی در برجهای انباشته این کار، شدنی نیست. کارهای تعمیراتی در درون برجهای سینی‌دار ، آسانتر انجام می‌گیرد. تمیز کردن برجهای انباشته ، از آنجا که باید پیش از هرچیز آنها را خالی کرده و بعد آنها را تمیز نمایم، بسیار پرهزینه خواهد بود.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    تصعید



    فرآیندی که در آن ، جامد بدون عبور از حالت مایع ، مستقیما به بخار تبدیل می‌گردد، تصعید نامیده می‌شود. این فرآیند برگشت پذیر است.


    01_trennung_sublimation.gif

    فرایند تصعید

    آنتالپی مولی تصعید
    آنتالپی مولی تصعید ، مقدار گرمایی است که بایستی به یک مول از ماده جامد داده شود تا مستقیما به گاز تبدیل گردد.
    فشار بخار یک جامد و فرایند تصعید
    مولکولها در یک بلور ، حول محور خود در شبکه نوسان می‌کنند. توزیع انرژی جنبشی بین این مولکولها نظیر توزیع انرژی جنبشی بین مولکولهای مایع و گاز است. در یک بلور ، انرژی از مولکولی به مولکول دیگر منتقل می‌شود و از این‌رو انرژی هیچ مولکولی ثابت نیست. مولکولهای پرانرژی در سطح بلور می‌توانند بر نیروهای جاذبه بلور غلبه کرده، به فاز بخار بگریزند.

    اگر بلور در یک ظرف سربسته باشد، سرانجام حالت تعادلی برقرار می‌شود که در آن حالت ، سرعت جدا شدن مولکولها از جامد با سرعت بازگشت مولکولهای بخار به بلور برابری می‌کند. فشار بخار یک جامد در دمای معین ، معیاری از تعداد مولکولها در حجم معینی از بخار در حالت تعادل است.
    ارتباط فشار بخار با نیروهای جاذبه
    گرچه فشار بخار برخی از جامدات ، بسیار کم است، ولی هر جامدی دارای فشار بخار است. مقدار فشار بخار با قدرت نیروهای جاذبه نسبت عکس دارد. به همین علت ، فشار بخار بلورهای یونی بسیار کم است.
    ارتباط فشار بخار جامد با دما
    توانایی مولکولها برای غلبه بر نیروهای جاذبه بین مولکولها با انرژی جنبشی آنها بستگی دارد. از اینرو ، فشار بخار جامدات با افزایش دما زیاد می‌شود. منحنی تغییرات فشار بخار برحسب دما نشان می‌دهد که این منحنی در نقطه انجماد ، منحنی فشار بخار آب را قطع می‌کند.
    فشار بخار جامد در نقطه انجماد
    در نقطه انجماد ، فشار بخار جامد برابر با فشار بخار مایع است. نقطه انجماد نرمال آب (در فشار کل یک اتمسفر) در غیاب هوا 25x10-4 درجه سانتیگراد است. ولی در هوا و در فشار کل یک اتمسفر نقطه انجماد آب 0.0000درجه سانتیگراد می‌باشد و این مقداری است که معمولا گزارش می‌شود. این اختلاف در نقطه انجماد ، از هوای محلول در آب ناشی می‌شود.

    نقطه انجماد مواد ، معمولا در هوا اندازه‌گیری می‌شود. ولی در هر حال ، تغییر انجماد مواد ناشی از وجود هوا عموما بسیار ناچیز است.
    تصعید دی‌اکسید کربن
    نمودار فاز دی‌اکسید کربن ، گونه‌ای از نمودار فاز موادی است که در فشار معمولی به جای ذوب شدن و جوشیدن تصعید می‌شوند. در فشار 5.11 اتمسفر نقطه سه گانه سیستم دی‌اکسید کربن ، 55.6 - درجه سانتیگراد است. دی‌اکسید کربن مایع ، تنها در فشارهای بالاتر از 5.11 اتمسفر وجود دارد. اگر دی‌اکسیدکربن جامد (یخ خشک) را تحت فشار یک اتمسفر گرم کنیم، در دمای 78.5 - درجه سانتی‌گراد مستقیما به گاز تبدیل می‌شود.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    انواع تقطیر


    دید کلی
    در اینجا ، منظور از تقطیر ، در واقع جداسازی فیزیکی برشهای پالایشگاه است که اساس آن اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن ، سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. در این مقاله انواع روشهای تقطیر را در برج تقطیر بررسی می‌کنیم.

    refinery.jpg

    تقطیر تبخیر ناگهانی
    در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در تبخیر می‌شوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری می‌شوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست.
    تقطیر با مایع برگشتی (تقطیر همراه با تصفیه)
    در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده می‌شود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده می‌شود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار ، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار می‌شود.

    نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد می‌باشد.در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، می‌توان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج می‌توانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.

    امروزه به علت گرانی سوخت ، سعی می‌شود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی می‌شود. برای همین ، تعداد سینیها را افزایش می‌دهند. در ابتدا مایع برگشتی را 100درصد انتخاب کرده و بعد مرتبا این درصد را کم می‌کنند و به صورت محصول خارج می‌کنند تا به این ترتیب دستگاه تنظیم شود.

    rtyuopl.jpg

    انواع مایع برگشتی
    • مایع برگشتی سرد: این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده می‌شود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.

    • مایع برگشتی گرم: مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار می‌گیرد.

    • مایع برگشتی داخلی: مجموع تمام مایعهای برگشتی داخل برج را که از سینی‌های بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان می‌باشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.

    • مایع برگشت دورانی: این نوع مایع برگشتی ، تبخیر نمی‌شود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج می‌کند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمی‌گردد. معمولا این نوع مایع برگشتی در قسمتهای میانی یا درونی برج بکار گرفته می‌شود و مایع برگشتی جانبی هم خوانده می‌شود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است.
    نسبت مایع برگشتی
    نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار می‌برند.
    تقطیر نوبتی
    این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار می‌گیرد. امروزه تقطیر نوبتی ، صرفا در رنگ و مواد آرایشی و موارد مشابه بکار بـرده می‌شود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار می‌گیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه می‌باشد.


    • تقطیر در مقیاس کم

    • ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز

    • استفاده نامنظم از دستگاه

    • تفکیک چند محصولی

    • عملیات تولید متوالی با فرآیندهای مختلف

    pala.jpg

    تقطیر مداوم
    امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده می‌شود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته می‌شود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده از تقطیر مداوم در پالایشگاهها مواد زیر تولید می‌شود:

    گاز بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، نفت کوره و انواع آسفالتها.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    نایلون



    نایلونها از گروه پلیمرهای پلی آمید هستند. این پلیمرها از طریق واکنش‌های چند تراکمی یا پلی کندانسیون تولید می‌شوند. می‌دانیم که نایلونها کاربردهای صنعتی فراوانی دارند. از جمله کاربردهای این پلیمرها در تهیه الیاف پارچه است.


    nylon.gif

    ساختمان فضایی نایلون

    پلی کندانسیون یا پلیمریزاسیون تراکمی
    اگر در یک گلوکز در تولید نشاسته و سلولز که منجر به خارج شدن آب می‌گردد و یا مثل بوجود آمدن نایلون که مانند مواد پروتئینی یک پلی آمید است و از پلیمر شدن یک آمید دو ظرفیتی به نام هگزامتیلن دی آمین به فرمول: NH2 - (CH2)6 - NH2 با یک اسید دو ظرفیتی به نام اسید آدیپیک به فرمول HOOC - (CH2)4 - COOH بوجود می‌آید.

    در این عمل عامل OH – اسید از دو طرف با هیدروژن گروه آمین NH2 – تشکیل آب می‌دهند و خارج می‌شوند و باقیمانده مولکولهای آنها ، زنجیر پلیمر را بوجود می‌آوردند. به عبارت دیگر واکنش چند تراکمی از متراکم شدن دو عامل مختلف از دو منومر مختلف و یا از متراکم شدن دو عامل مختلف از یک مولکول با همان مولکول پلیمر سنتز می‌شود.
    پلی آمیدها
    پلی آمیدها شامل سه نوع نایلون ، نایلون 6 ، نایلون 6و 6 و نایلون 11 می‌باشد. همانطور که ذکر شد، پلی آمیدها از طریق واکنشهای چند تراکمی یا پلی کندانسیون بوجود می‌آیند.
    نایلون 6
    نایلون 6 ، از باز شدن حلقه کاپرولاکتام در حضور آغازگر N - بنزوئیل δ - پیرولیدون و کاتالیزور سدیم آمید NH2Na بدست می‌آید. ماده اولیه کاپرولاکتام ، بنزن است. از کاپرولاکتام در محیط عمل به مقدار بسیار زیاد داریم. ولی NH2Na2 ، چون بعنوان آغازگر بکار می‌رود، تنها به مقدار بسیار اندک داریم که آغازگر حلقه بوده و بعد از آن ، واکنش پیش خواهد رفت.
    نایلون 6 و 6
    همانطور که گفته شد، نایلون 6 و 6 از متراکم شدن اسید آدیپیک و هگزا متیلن دی آمین در حضور حرارت و حذف یک مولکول آب ایجاد می‌گردد.


    یک مولکول آب + نایلون 6 و 6 <---------- HOOC-(Ch2)4-COOH + NH2-(CH2)6-NH2 + حرارت
    نایلون 11
    نایلون 11 فرآورده بسیار مهمی است که از متراکم شدن آمینو اندوکانوئیک اسید که از روغن گرچک گرفته می‌شود، بوجود می‌آید و پلی آمید Rilsan یا Nylon11 نامیده می‌شود. از متراکم شدن این ماده نیز در حضور حرارت ، آب آزاد می‌شود. Rilsan بهترین الیاف پارچه محسوب می‌شود. چون رنگ پذیری و استحکام بالایی دارد.

    lap-nylon-lrg.jpg

    کیف از جنس نایلون

    خواص و کاربردهای نایلون
    بیشترین کاربرد نایلونها در تهیه الیاف پارچه و صنایع نساجی است و در تهیه قطعات صنعتی نیز کاربرد دارند. نایلون‌ها قدرت مکانیکی خوبی دارند و به این علت در این صنایع استفاده می‌شوند. این پلیمرها ، نقطه ذوب بالایی دارند. چون در بین زنجیرهای پلیمر ، پیوند هیدروژنی ایجاد شده است. این پلیمرها کمتر در حلال‌ها حل می‌شوند، اما قابل انحلال در اسید فرمیک و پلی آمیدها هستند.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    آلاینده های شیمیایی هوا

    مقدمه کلی
    آلاینده‌ها بر حسب کربن و هیدروژن هستند. برخی از ذرات آلی که بیش از سایر ذرات آلی در اتمسفر یافت می‌شوند، عبارتند از: فنلها ، اسیدهای آلی و الکلها. معروفترین ذرات معدنی موجود در اتمسفر عبارتند از نیتراتها ، سولفاتها و فلزاتی مانند آهن ، سرب ، روی و وانادیم.

    pala3.jpg

    منابع آلاینده‌ها
    هوا دارای آلاینده‌های طبیعی نظیر هاگهای قارچها ، تخم گیاهان ، ذرات معلق نمک و دود و ذرات غبار حاصل از آتش جنگلها و فوران آتشفشانهاست. همچنین هوا حاوی هیدروکربنها به شکل ترپنهای ناشی از درختان کاج ، سولفید هیدروژن (H2S) و متان (CH4) حاصل از تجزیه بی‌هوازی مواد آلی می‌باشد.

    منابع آلاینده‌ها را بطور کلی می‌توان در چهار گروه اصلی طبقه بندی کرد: شامل وسائط نقلیه موتوری ، وسائط نقلیه هوایی ، ترنها ، کشتی‌ها و هر نوع استفاده و یا تبخیر بنزین ، در بر گیرنده تامین انرژی و حرارت لازم برای مقاصد مسکونی ، تجاری و صنعتی ، نیروگاههای مولد برق که با نیروی بخار کار می‌کنند، مانند کاغذ و پالایشگاههای تصفیه نفت ، شامل زایدات ناشی از مصارف خانگی و تجاری ، زایدات زغال سنگ و خاکستر باقیمانده از سوزاندن بقایای کشاورزی.
    هیدروکربنها
    ترکیبات آلی که تنها دارای هیدروژن و کربن هستند، به نام هیدروکربن نام می‌گیرند که بطور کلی به دو گروه آلیفاتیک و آروماتیک تقسیم می‌شوند.
    هیدروکربنهای آلیفاتیک
    گروه هیدروکربنهای آلیفاتیک شامل آلکانها ، آلکنها و آلکینها هستند. آلکانها عبارتند از: هیدروکربنهای اشباع شده که در واکنشهای فتوشیمیایی اتمسفر نقش ندارند. آلکنها که معمولا به نام اولفین‌ها خوانده می‌شوند، اشباع نشده هستند و در اتمسفر از لحاظ فتوشیمیایی تا حدودی فعال‌اند. این گروه در حضور نور خورشید با اکسید نیتروژن در غلظتهای زیاد واکنش نشان می‌دهند و آلاینده‌های ثانوی مانند پراکسی استیل نیترات (PAN) و ازن (O3) را بوجود می‌آورند. هیدروکربنهای آلیفاتیک تولید شده تا حدود (326mg/m3) برای سلامت انسان و جانوران خطرساز نیست.
    هیدروکربنهای آروماتیک
    هیدروکربنهای آروماتیک که از لحاظ بیوشیمیایی و بیولوژیکی فعال و برخی از آنها بالقوه سرطانزا هستند، یا از بنزن مشتق شده‌اند و یا به آن مربوط می‌شوند. افزایش میزان ابتلا به سرطان ریه در نواحی شهری به هیدروکربنهای چند هسته‌ای خارج شده از اگزوز اتومبیل‌ها نسبت داده شده است. بنزوپیرین ، سرطانزاترین هیدروکربنهاست. بنزاسفنانتریلین ، بنزوانتراسین و کریزین هم مواد سرطانزای ضعیف‌اند.
    منابع هیدروکربنها
    میل‌لنگها و کاربراتورها ، بیشترین درصد آزادسازی هیدروکربنها را به خود اختصاص داده‌اند. تجهیزات سوزاننده مکمل که با کاتالیست کار می‌کنند، هیدروکربنها را آزاد کرده و منوکسید کربن را سوزانده و تولید CO2 و آب می‌نمایند.
    تکنولوژی کنترل هیدروکربنهای متصاعد شده از منابع ساکن
    تکنولوژی کنترل هیدروکربنهای متصاعد شده از منابع ساکن عبارتند از: خاکستر سازی ، جذب ، تراکم و جایگزین نمودن سایر مواد.

    فرآیند خاکسترسازی با دستگاههای سوزاننده مکمل و دستگاههای سوزاننده مکمل کاتالیستی صورت می‌گیرد. جذب سطحی توسط کربن فعال صورت می‌گیرد و جذب هیدروکربنها بوسیله یک محلول شوینده در برجهای سینی‌دار ، شوینده‌های جت و برجهای آکنه ، برجهای پاشنده و شوینده‌های ونتوری صورت می‌گیرد.

    9948_full.jpg

    منوکسید کربن
    گاز منوکسید کربن ، بیرنگ ، بی‌مزه و بی‌بو است و در شرایط عادی از لحاظ شیمیایی بی‌اثر و طول عمر متوسط آن در اتمسفر حدود 2.5 ماه است. در حال حاضر مقدار منو اکسید کربن در اتمسفر بر روی اموال انسانی ، گیاهان و اشیا بی‌اثر یا کم‌اثر است. در غلظتهای زیاد منو کسید کربن ، به علت تمایل زیاد به جذب هموگلوبین می‌تواند در متابولیسم تنفسی انسان بطور جدی اختلال ایجاد نما‌ید.

    غلظت منوکسید کربن در نواحی متراکم شهری که ترافیک سنگین و حرکت خودروها کند است، به میزان قابل توجهی افزایش می‌یابد. منابع کربن ، منوکسید کربن طبیعی و انسانی هستند. طبق گزارش آزمایشگاه ملی آرگون ، در اثر اکسیداسیون گاز متان حاصل از مرگ گیاهان سالانه 13.2 میلیون تن CO وارد طبیعت می‌شود. منبع دیگر تولید این ماده ، متابولیسم انسانی است بازدم شخصی که در حال استراحت است بطور تقریبی حاوی CO ، 1ppm است.
    استانداردهای کنترل منوکسید کربن
    آنگاه که مقدار منوکسید کربن در مدت زمان کوتاهی به حد مرگبار می‌رسد و شرایط اضطراری می‌شود، برای مقابله با چنین شرایطی که مقدار CO بطور متوسط در مدت زمان 8 ساعت به (46mg/m3 (40ppm می‌رسد،عملیات شدید کنترلی انجام می‌شوند که عبارتند از: متوقف ساختن کارخانه‌های صنعتی و مسدود نمودن جاده‌هایی که در آنها معمولا ترافیک سنیگن وجود دارد. جذب سطحی ، جذب ، میعان و احتراق روشهای فنی کنترل CO هستند.
    اکسیدهای گوگرد
    این اکسیدها شامل 6 ترکیب مختلف گازی هستند: منوکسید سولفور (SO) ، دی‌‌اکسید سولفور (SO2) ، تری‌اکسید سولفور (SO) تترا اکسید سولفور (SO4) ، سکو اکسید سولفور (SO2) و هپتو اکسید سولفور (S2O7). در مطالعه آلودگی هوا ، دی‌اکسید سولفور و تری‌اکسید سولفور حائز بیشترین اهمیت است. با توجه به پایداری نسبی SO2 در اتمسفر این کار می‌تواند به عنوان یک عامل اکسید کننده و یا احیا کننده وارد عمل شود.

    SO2 که با سایر اجزای موجود در اتمسفر به شکل فتوشیمیایی یا کاتالیستی وارد واکنش می‌شود، می‌تواند قطرات اسید سولفوریک (H2SO4) و نمکهای اسید سولفوریک را تولید بکند. SO2 با آب وارد واکنش شده ، تولید سولفورو اسید می‌نماید. این اسید ضعیف با بیش از 80% SO2 آزاد شده در اتمسفر ناشی از فعالیتهای انسانی به سوزاندن سوختهای جامد و فسیلی مربوط می‌شود.
    استانداردهای کنترل اکسیدهای ‌سولفور
    روشهای گسترده جهت کنترل اکسید سولفور عبارتند از: بکارگیری سوختهای دارای گوگرد کمتر ، جداسازی گوگرد از سوخت ، جایگزین ساختن منابع انرژی‌زای دیگر ، تبدیل زغال سنگ به مایع یا گاز ، پاکسازی محصولات حاصل از احتراق.
    اکسیدهای نیتروژن
    شامل منوکسید نیتروژن (NO) ، دی‌اکسید نیتروژن (NO2) ، نیترو اکسید (N2O) نیتروژن سیسکواکسید (N2O3) ، نیتروژن تترااکسید (N2O4) و نیتروژن پنتواکسید (N2O5) هستند.

    دو گاز مهمی در معادلات آلودگی هوا مهم‌اند عبارتند از: اکسید نیتریک (NO) و دی‌اکسید نیتروژن ، دی‌اکسید نیتروژن که از هوا سنگینتر و در آب محلول است، در آب تشکیل اسید نیتریک و یا اسید نیترو و یا اکسید نیتریک (NO) می‌دهد. اسید نیتریک و اسید نیترو در اثر بارندگی به سطح زمین سقوط کرده ، یا با آمونیاک موجود در اتمسفر (NH3) ترکیب شده آمونیم نیترات (NH4NO3) بوجود می‌آورد.

    در این مواقع 2NO از اجزای غذایی گیاهان را تشکیل می‌دهد. NO2 یکی از اجزای غذایی گیاهان را تشکیل می‌دهد. NO2 که در دامنه تشعشع فوق‌بنفش جاذب خوب انرژی به شمار می‌رود، در تولید آلاینده‌های ثانوی هوا از قبیل ازن O3 نقش مهمی دارد مقدار NO آزاد شده در اتمسفر به مراتب بیش از مقدار NO2 آزاد شده است. NO در فرآیندهای احتراقی با دمای زیاد و در اثر ترکیب نیتروژن و اکسیژن بوجود می‌آید.
    منابع اکسیدهای نیتروژن
    برخی از اکسیدهای نیتروژن به صورت طبیعی و برخی به صورت انسانی ایجاد می‌شوند. در اثر آتش‌سوزی جنگل مقدار اندکی NO2 ایجاد می‌شود. تجزیه باکتریایی مواد آلی نیز سبب آزاد شدن NO2 در اتمسفر می‌شود. در واقع منابع تولید کننده NO2 بطور طبیعی تقریبا 10 برابر منابع انسانی که در نواحی شهری دارای تراکم و غلظت هستند می‌باشد. بخش عمده NO2 تولید شده از منابع انسانی مربوط به احتراق سوخت در منابع ساکن و حرکت وسائط نقلیه می‌باشد.
    استانداردهای کنترل اکسیدهای نیتروژن
    بطور کلی اغلب اندازه گیریهای کنترلی برای NO2 آزاد شده در راستای محدود ساختن شرایط احتراق و کاهش تولید NO2 و همچنین استفاده از تجهیزات متنوع برای حذف NO2 از جریان گازهای خروجی انجام می‌شوند.
    اکسید کننده‌های فتوشیمیایی
    اکسید ‌کننده‌ها یا اکسید کننده‌های کامل دو عبارتی هستند که برای توصیف مقادیر اکسید ‌‌کننده‌های فتوشیمیایی بکار می‌روند و معمولا نشان‌دهنده قدرت اکسید کنندگی هوای اتمسفر می‌باشند. ازن (O3) که اکسید‌ کننده فتوشیمیایی اصلی است، در حدود 90 درصد از اکسید کننده‌ها را بخود اختصاص می‌دهد. سایر اکسید کننده‌های فتوشیمیایی مهم در کنترل آلودگی هوا عبارتند از: اکسیژن نوزاد (O) ، اکسیژن مولکولی برانگیخته (O2) ، پروکسی آسیل نیترات (PAN) ، پروکسی پروپانول نیترات (PPN) ، پروکسی بوتیل نیترات (PBN) ، دی اکسید نیتروژن (NO2) ، پراکسید هیدروژن (H2O2) و الکیل نیتراتها.

    005838.jpg

    اثرات اکسید‌کننده‌ها
    اثرات اکسید‌کننده‌ها بر سلامتی انسان می‌تواند موجب سرفه ، کوتاهی نفس ، گرفتگی راه عبور هوا ، گرفنگی و درد قفسه سـ*ـینه ، عملکرد نامناسب ششها ، تغییر سلولهای قرمز خون ، آماس خشک و سوزش چشم ، بینی و گلو شوند. اکسید ‌کننده‌های اصلی که به گیاهان آسیب می‌رسانند، عبارتند از PAN , O3 که از خلال روزنه‌های موجود در برگ وارد گیاه شده و در متابولیسم سلول گیاهی دخالت می‌کنند. علائم بوجود آمده از تماس گیاه با PAN عبارتند از: برونزه شدن ، براق شدن و نقره‌ای شده سطح زیرین برگها.

    تماس متناوب اکسید ‌کننده‌ها با گیاهان موجب کاهش محصولات می‌شود. اکسید‌ کننده‌ها به سرعت با رنگها ، الاستومرها (اکسید ‌کننده‌ها) الیاف پارچه‌ای و رنگهای نساجی واکنش نشان داده ، آنها را اکسید می‌کند.
    استانداردهای کنترل اکسید ‌کننده‌ها
    این نکته روشن شده است که حتی اگر هیچ هیدروکربنی در اتمسفر وجود نداشته باشد، تا زمانی که CO و NO2 حضور دارند، مقادیر قابل ملاحظه‌ای از ازن می‌تواند تولید شود. در حال حاضر علیرغم کوششهای منظم بر روی کنترل CO ، هیدروکربنها و NO2 مقادیری از این آلاینده‌ها که برای ایجاد ازن فتوشیمیایی کافی هستند، همچنان در اتمسفر وجود دارد.
     

    ☾♔TALAYEH_A♔☽

    کاربر نگاه دانلود
    کاربر نگاه دانلود
    عضویت
    2017/05/18
    ارسالی ها
    35,488
    امتیاز واکنش
    104,218
    امتیاز
    1,376
    اثرات آلودگی هوا بر شرایط جوی



    acidrn1.jpg

    مقدمه کلی
    روابط متقابل شرایط اتمسفری و کیفیت هوا درباره اثراتی که شرایط جوی می‌تواند بر پخش ، غلظت یا حذف آلاینده‌های اتمسفری داشته باشد، ارتباطی دو جانبه است که بصورت تغییرات در مقیاس متوسط و مقیاس کوچک که شامل کاهش قابلیت دید ، بارشهای متغیر ، جزیره گرمایی شهری و تغییرات در مقیاس بزرگ است، صورت می‌گیرد.
    تغییرات در مقیاس متوسط کوچک
    کاهش قابلیت دید
    کاهش قابلیت دید ، یکی از اولین اثرات قابل ملاحظه آلودگی بر پدیده‌های جوی شمرده می‌شود. در عبارتهای هواشناسی ، قابلیت دید عبارتست از معیار استاندارد شفافیت اتمسفر در طیف مرئی. کاهش قابلیت دید بیانگر مخاطرات ایمنی و از لحاظ ظاهر ناخواسته است. ذرات در اندازه‌هایی بین 38/0 تا 76/0 µm و مولکولهای گاز (بویژه دی‌اکسید سولفور) آلاینده‌های اصلی هستند که در کاهش قابلیت دید نقش دارند.

    این آلاینده‌ها نور را جذب و منتشر می‌سازند. پراکندگی نور در اثر کاهش تمایز بین اجسام و زمینه آسمان موجب کاهش قابلیت دید می‌شود. پراش نور بوسیله ذرات کوچک موجب ایجاد رنگی مایل به قرمز در مواقع غروب خورشید می‌شود.
    بارشهای متغیر
    آلاینده‌های هوا که در اتمسفر منتشر شده یا شکل گرفته‌اند، می‌توانند سبب افزایش بارندگی شوند. این پدیده از آن جهت رخ می‌دهد که ذرات کوچک به‌صورت هسته‌ها عمل می‌نمایند و تشکیل قطرات باران را تقویت می‌کنند. این همان اصل مشابهی است که در مورد تشکیل ابر وجود دارد. افزایش زیاد بارش بویژه در هوای بالای مراکز شهرنشینی که انتشار ذرات در آنها به مقدار زیاد صورت می‌گیرد قابل ملاحظه است.

    این نکته به ثبات رسیده است که تشکیل مه در شهرهای بزرگ دو برابر تشکیل مه در نواحی توسعه نیافته است و تشکیل ابر در شهرهای بزرگ ده درصد بیشتر از نواحی اطراف شهرهاست. غلظتهای زیاد SO2 افزایش مه در نواحی صنعتی مربوطند. NO و SO2 آزاد شده با بارانهای اسیدی مرتبط هستند.

    air1.jpg

    جزیره گرمایی شهری
    آلاینده‌های هوا سبب کاهش قابل ملاحظه تابش خورشیدی در شهرها می‌شوند. در برخی از شهرها بعلت آلودگی اتمسفر ، انرژی گرمایی از 15 تا 20 درصد سطح کمتر به سطح زمین می‌رسد. با این وجود راه مقابله با این مشکل عبارت است از افزایش قابلیت حفظ گرما به کمک تجهیزات شهری. این قابلیت در مصالح ساختمانی نظیر قیر ، سنگ و آجر نهفته است.

    در مقابله با این اتلاف انرژی ، افزایش گرمایی در اتمسفر بالای شهرها حین وضعیت هوایی سرد و قابل ملاحظه است. این افزایش در دمای اتمسفری بطور مستقیم با افزایش سوخت مصرفی مربوط است. افزایش که به کمک روزهای گرمایی ناحیه‌ای که در آن شهر قرار گرفته است، قابل تخمین است. از آنجایی که افزایش دمای ایجاد شده در اثر سوختن مواد فسیلی ، کاهش دمای بوجود آمده در اثر پوشش ذرات را جبران می‌نماید.

    شهرها دماهای متوسط بیشتری دارند و بارش برف قابل اندازه گیری در آنها کمتر از نواحی غیر شهری مجاور آنهاست. پدیده‌ای که از این عوامل ناشی می‌شود، به نام جزیره گرمایی شهری شناخته شده است.
    تغییرات در مقیاس بزرگ
    افزایش مقدار دی‌اکسید کربن حاصل از سوختن مواد فسیلی موجب تشدید اثر گلخانه‌ای و افزایش دمای زمین می‌گردد. با این وجود بنظر می‌رسد که کاهش اندک دمای زمین از سال 1945 علی‌رغم افزایش مصرف سوختهای فسیلی دال بر کاهش تابش خورشیدی بعلت پراکندگی آثار جذب ناشی از افزایش مقدار ذرات در مقیاس بزرگ بوده است و اثرات ناشی از افزایش دی‌اکسید کربن که سبب حبس گرما می‌شود، نتوانسته است اثر کاهش ناشی از ذرات را خنثی کند.

    در واقع کسانی هستند که معتقدند تخلیه ممتد ذرات به درون اتمسفر منجر به پدید آمدن عصر یخبندان دیگری خواهد شد.
    نتیجه
    بطور کلی اثرات جهانی آلودگی هوا بر متغیرهای هواشناسی با عبارتهای ساده قابل توصیف نیست در حال حاضر شواهد مستندی دال بر تاثیر فعالیتهای انسانی بر وضعیت هوا در درون و پیرامون نواحی شهری وجود دارند. قراین علت و معلولی میان آلودگی هوا و تغییرات جهانی وضعیت هوا کمتر مستدل بوده‌اند، همچنین پوشش ممتد اتمسفر می‌تواند در مقیاس بزرگ موجب بروز تغییرات جوی گردد.
     

    برخی موضوعات مشابه

    بالا